• Sobre el blog
  • Un año en Los Gelves
  • Diez años en Los Gelves

Los Gelves

~ Somos lo que somos porque fuimos lo que fuimos.

Los Gelves

Archivos de etiqueta: Navegación aérea

Trabajo de equipo

20 martes Oct 2015

Posted by ibadomar in Aviación

≈ 1 comentario

Etiquetas

Aviación, Control aéreo, IFATCA, IFR, Navegación aérea, Seguridad aérea, Técnica, VFR

Hoy, 20 de octubre, es el día del controlador aéreo, jornada que se creó hace algunos años con el fin de dar a conocer esta profesión. Puestos a celebrarlo, me parece que divulgar en qué consiste este trabajo es la mejor forma de hacerlo, puesto que así se cumple con la finalidad con la que IFATCA, la federación internacional que agrupa a los profesionales del control aéreo, instituyó la fecha.

ATCODAY2015

Cartel del día del controlador 2015

Hace tiempo me gustaba llevar a visitantes a mi lugar de trabajo (ahora es muy complicado por una normativa de seguridad un tanto exagerada). Era divertido porque la primera sorpresa que se llevaban era ver que no nos acercábamos a ningún aeropuerto y no íbamos a subir a una torre de control. “¿Pero los controladores no trabajáis en una torre?” era la primera pregunta. Bueno, pues algunos sí y otros, como yo, no. Es más, nunca he trabajado en una torre. Pero vayamos por partes.

El primero de los objetivos del control aéreo, tal y como los define la Organización Internacional de Aviación Civil (OACI), es evitar las colisiones entre aeronaves y, cuando se está en el área de maniobras de un aeropuerto, también entre las aeronaves y posibles obstáculos. Hay otros objetivos (mantener un flujo ordenado de tráfico, acelerar las operaciones en la medida de lo posible…) pero lo fundamental, la máxima prioridad, es evitar colisiones. Vamos a considerar diferentes situaciones para aclarar esta idea y ver también qué clases de controladores hay.

Empecemos en un aeropuerto. Por el momento nos limitaremos al área de maniobras, que es como se llama el conjunto formado por la pista de despegue y aterrizaje y las calles de rodaje, que son las calzadas por las que se mueven los aviones entre la plataforma (el área donde estacionan) y la pista. Hablamos por tanto de aviones que están en tierra. Los controladores aéreos deben, en este caso, evitar accidentes entre ellos y también con cualquier otro vehículo u obstáculo. Pongamos algunos ejemplos:

– Supongamos un avión que está rodando por una calle de rodaje y otro que está a punto de entrar en ella para dirigirse, desde la plataforma, a la pista de despegue. ¿Quién cede el paso al otro? En un aeródromo controlado lo decide el controlador.

– ¿Y si no encuentra a otro avión sino el coche de un señalero? También lo decide el controlador.

– ¿Y si son los bomberos del aeropuerto los que están llegando al cruce? Lo mismo.

– ¿Y si hay 8 aviones moviéndose por las calles de rodaje mientras que un tractor de remolque se dirige a la plataforma arrastrando a un noveno avión y un coche está haciendo una revisión de la pista? También en ese caso ordenan el tráfico los controladores, y hablo en plural porque con tanto movimiento es posible que el aeropuerto sea grande y tenga varias posiciones de control.

¿Y qué pasa con los aviones cuando están en el aire? En las cercanías del aeropuerto también los controlará la torre. El controlador autoriza a despegar (siempre tras echar una ojeada a la pista para asegurarse de que no hay nada ni nadie en ella) y a aterrizar (tras volver a mirar la pista), pero también los alrededores del aeropuerto están bajo su jurisdicción. En aeropuertos grandes, donde sólo hay vuelos instrumentales, como Barajas o El Prat, esto no es tan evidente, pero quien visite la torre de Cuatro Vientos o Sabadell verá al controlador dar instrucciones a los aviones para indicar quién aterriza antes:  “EC-XXX es número dos detrás de una Cessna 172 que está virando a final”.

Parte del arte del controlador de torre reside en afinar lo más posible con el tráfico: si tenemos varios aviones llegando para aterrizar y varios en el punto de espera para salir ¿tendrá tiempo un avión de despegar entre dos que aterrizan? ¿O será mejor dejar que aterricen todos y que despeguen a continuación los que esperan? Dependerá de las circunstancias, claro.

Un buen torrero conseguirá optimizar el uso de la pista, pero si se equivoca puede que alguno de los aviones que están a punto de aterrizar tenga que frustrar la maniobra debido a que la pista está ocupada por un avión que espera para despegar. Por eso a veces hay que pecar de prudente aunque eso provoque una demora. El peor escenario sería que un avión a punto de tomar tierra tuviera que frustrar porque otro estuviera, no sólo en la pista, sino en carrera de despegue. En ese caso tendríamos a dos aviones, uno literalmente encima de otro, ascendiendo a la vez. Nunca debe llegarse a tal caso, pero si se diera, el controlador también está para eso: para tragar saliva, apretar el culo (perdón por la expresión tan lamentable, pero en este caso es descriptiva… y exacta) y resolver el problema.

El controlador de aeródromo necesita ver la pista, el aeropuerto y sus alrededores y por eso se le ubica en una torre, para que tenga buena visibilidad. Pero cuando los aviones están lejos de los aeropuertos también están bajo control. Y aquí es donde dejamos de hablar de torres para referirnos a los centros de control.

Antes de seguir adelante será bueno aclarar la diferencia entre un vuelo VFR (visual), que es el que suelen hacer las avionetas, y uno IFR (instrumental). El piloto VFR necesita ver puntos de referencia exteriores para conocer su posición y realizar el vuelo, mientras que el IFR se basa en sus instrumentos. Podríamos decir que uno mira siempre al exterior de su avión, mientras que el otro mantiene la mirada dentro de la cabina sin importarle si fuera hay visibilidad o no, si es de día o de noche o si vuela dentro de una nube. El servicio que recibe cada uno por parte de control depende de cómo se haya clasificado el espacio aéreo (hay hasta siete clases distintas), pero en general podemos decir que los pilotos VFR cuidan de mantenerse apartados unos de otros mientras que los pilotos IFR confían en que sea un controlador aéreo quien realice esa función.

Existen técnicas para garantizar que los aviones mantengan una separación adecuada sin necesidad de sistemas de vigilancia, pero en la actualidad, en un país como España, el control aéreo de ruta se hace mediante radar. He mencionado la palabra separación, que es un término frecuente en el oficio: puesto que se trata de evitar colisiones, la norma obliga a que los aviones tengan una separación mínima entre sí (5 millas náuticas cuando están a la misma altitud, 1.000 pies en caso contrario). 5 millas son 9,26 Km. y eso parece mucha distancia, pero un avión a velocidad de crucero la recorre en unos 40 segundos y si dos aviones van de frente esas 5 millas son apenas 20 segundos.

Pero volvamos ahora a los centros de control. Los problemas de un controlador de ruta tienen lugar normalmente a gran altitud, casi en la estratosfera, y muy lejos de su ubicación. Un controlador del centro de control de Madrid puede estar ocupado, por ejemplo, en estudiar cómo mantener la separación de dos aviones que se van a cruzar en la vertical de Santiago de Compostela a 39.000 pies de altitud (casi 12 kilómetros). La solución, una vez más, depende de las circunstancias. Veamos algunos ejemplos:

– Si uno de los aviones se dirige a Oporto, tendrá que iniciar pronto el descenso. Se le puede ordenar que lo inicie un poco antes de lo habitual y así los aviones tendrán separación vertical.

– Se puede ordenar a uno de los aviones que vire unos grados (normalmente 10 o 15, pero puede que más) para asegurar que se crucen con más de 5 millas. A esto se le llama dar un vector.

– Si la ruta de uno de los aviones le lleva a virar en algún punto, se puede dar un directo, es decir ordenar que vaya directamente a un punto alejado de la ruta más allá del viraje incluido en ella, para conseguir lo mismo que con el vector.

Otro problema típico es tener un avión encima de otro, ambos en la misma ruta, y que el que está más alto se esté acercando a su destino, por lo que tendrá que descender atravesando el nivel de la otra aeronave. El controlador tendrá que actuar para asegurarse de que el descenso se hace sin infringir las separaciones mínimas.

También podemos mezclar varios problemas: el avión que se acerca a su destino y tiene que descender está al mismo nivel que otro con el que se cruzará en ocho minutos, pero tiene debajo a un tercero que sigue la misma ruta y al que no podemos obligar a virar porque eso crearía otro conflicto con una cuarta aeronave. Este tipo de problemas encadenados son la rutina habitual de un centro de control.

Cerca de los aeropuertos, los aviones, vengan de donde vengan, tienen que maniobrar de tal modo que terminen por formar una secuencia ordenada en la que todos mantengan la separación adecuada entre sí mientras forman una hilera que termina en el umbral de pista. Los controladores que se encargan de esto son los aproximadores. Su trabajo típico es ordenar rumbos (es decir dar vectores), altitudes y velocidades a los pilotos para conseguir que todos terminen por encajar ordenadamente en la secuencia.

Decía que es divertido llevar a visitantes al centro de control y una de las razones es que quienes no conocen este mundillo, aunque tienen una idea de cuál es la función de un piloto, desconocen la de un controlador. El visitante, tras ver un par de sectores de ruta y que se le explique cómo se está resolviendo algún conflicto, se acerca a aproximación y oye cómo un controlador está dando órdenes del siguiente tipo:

– Iberia 123 vire izquierda, rumbo dos cuatro cero.

– Air Europa 456 reduzca a 180 nudos.

– Vueling 789 descienda a 6.000 pies.

Le queda entonces la impresión de que el piloto se limita a cumplir órdenes y de que todas las decisiones se toman en la sala de control; pero eso tampoco es exacto. El piloto mantiene siempre el control de su avión y la responsabilidad sobre su propio vuelo, mientras que el controlador tiene la visión de conjunto de todas las aeronaves en su sector. Es un trabajo de equipo, aunque no siempre lo parezca.

Esto se hace evidente cuando las cosas se complican. Puede ser porque una nube tormentosa se coloca en el peor de los lugares, porque haya turbulencia a determinados niveles, porque surja una emergencia… en esos casos el intercambio de información es constante. Ahora el piloto no se limita a seguir dócilmente las órdenes: el Iberia 123 de hace un momento podría decir que no puede seguir el rumbo ordenado porque se metería en la tormenta, así que pide desviarse en otro rumbo diferente, siempre sujeto a la aprobación de control. El controlador por su parte dará las órdenes oportunas para dirigir el tráfico aéreo asegurándose de que ese imprevisto no crea conflictos entre aeronaves. Otra situación fuera de lo habitual es que un piloto  declare una emergencia y necesite aterrizar cuanto antes. En ese caso las órdenes del controlador irán dirigidas a abrirle camino, demorando a otros aviones si es necesario.

Podría extenderme mucho más sobre este tema, pero como introducción creo que es suficiente. Prometo escribir otro día un artículo sobre el control de afluencia para explicar por qué a veces se produce una demora aparentemente inexplicable. Pero eso será otro día, porque hoy es el día del controlador aéreo y, qué demonios, no todo va a ser divulgar la profesión… también me apetece celebrarlo de la forma tradicional.

atco2009

Compartir

  • Twitter
  • Facebook
  • Meneame
  • Correo electrónico
  • LinkedIn

Me gusta esto:

Me gusta Cargando...

Volando a ciegas (III): el inercial y el ILS

17 martes Mar 2015

Posted by ibadomar in Historia, Técnica

≈ Deja un comentario

Etiquetas

Aviación, ILS, Navegación aérea, Navegación inercial, Seguridad aérea, Técnica

Lo malo de iniciar una serie de artículos sobre un mismo tema es que estás obligado a seguir con ella, aunque en este caso la obligación será corta porque éste es el último de los que se refieren a navegación aérea. Vamos a hablar de dos sistemas que utilizan los pilotos en fases del vuelo muy diferentes. El primero de ellos, el navegador inercial, es el sistema perfecto para su uso sobre el océano, porque es totalmente autónomo, es decir que no necesita de ningún equipo externo a la aeronave. El segundo, el ILS, es el que se emplea para realizar el guiado a una pista en condiciones de baja visibilidad.

Entender el inercial es muy sencillo. Empezaremos con un ejemplo: supongamos que viajamos en coche de Madrid a Barcelona (ciudades entre las que hay unos 600 Km) y tras tres horas de viaje nos preguntamos dónde estamos aproximadamente. Sabiendo que nuestra velocidad media es de unos 100 Km/h y que llevamos 3 horas de viaje es fácil suponer que estamos a 300 Km de Madrid, esto es a mitad de camino. La respuesta por tanto es: «debemos de estar llegando a Zaragoza». Quien no haya hecho alguna vez un cálculo similar es que nunca ha viajado en coche.

En la navegación marítima se utiliza desde siempre un sistema parecido: conocido nuestro rumbo y la velocidad aproximada podemos calcular nuestro posición «a estima», que es el nombre que tiene este método. Pero en aviación no usamos la velocidad directamente. En su lugar utilizamos la aceleración para calcular la velocidad y a partir de ahí la posición. Me explico con otro ejemplo: todos hemos visto algún teléfono provisto de acelerómetros, que sirven por ejemplo para girar automáticamente una foto cuando se cambia la posición del teléfono. Supongamos que colgamos un aparato así del techo de un avión. Al acelerar en carrera de despegue veríamos cómo el teléfono va hacia atrás, y con el acelerómetro podríamos saber cuánto aceleramos y qué velocidad alcanzamos. Dejando el teléfono colgado durante todo el vuelo estaríamos midiendo aceleraciones continuamente y calculando velocidades a partir de ellas. Con la velocidad podemos obtener nuestra posición de la misma manera que hacíamos en el coche.

El navegador inercial de los aviones es algo más complicado técnicamente, claro, pero la esencia es la que acabo de explicar. Tienen un problema: que los errores de posición se incrementan con el cuadrado del tiempo transcurrido, por lo que conviene actualizar la posición con frecuencia usando ayudas externas. Es fácil de comprender: un error pequeño nos da una aceleración ligeramente equivocada, por lo que calculamos una velocidad un poco errónea, que nos lleva a una posición que no es del todo correcta. Cuando sigamos calculando, tomaremos esa posición como punto de partida y los nuevos errores se acumularán.

Esto es un inconveniente, pero cuando no hay posibilidad de usar sistemas externos (por ejemplo sobre el océano, donde no hay dónde instalar las ayudas que vimos en artículos anteriores: VOR, DME o NDB) el inercial es lo mejor que tenemos… a excepción de los sistemas de navegación por satélite. Pero hasta que se generalizó el uso del GPS, allá por los años 90, el inercial era el único instrumento que permitía saber la posición en los vuelos transoceánicos.

Ya que mencionamos el GPS, hay que reconocer que los sistemas por satélite han revolucionado la navegación aérea. En la actualidad se emplean junto con todos los sistemas descritos en esta serie de artículos. Pero hay un sistema de navegación del que aún no hemos hablado y que seguirá en uso durante mucho tiempo, a pesar de que las primeras instalaciones datan de la década de 1930. Me refiero al sistema instrumental de ayuda al aterrizaje (Instrument Landing System), más conocido como ILS.

Hasta ahora hemos visto sistemas que permiten saber por dónde volamos, aunque no veamos el mundo exterior, pero ahora se trata de llevar el avión hasta la pista y aunque el GPS tiene excelentes características, no permite esta maniobra, al menos sin equipos auxiliares. El sistema más utilizado para volar hacia la pista sin visibilidad, el ILS, emite una señal que viene modulada de forma distinta según el lugar en el que estemos. Para que sea más fácil de comprender veamos la siguiente imagen, que he tomado, como es costumbre, de Wikipedia.

LLZ

Aquí se ve claro: a la izquierda de la pista recibiremos una señal de 90 Hz mientras que a la derecha captaremos una de 150 Hz. Esto es como si nos pusiéramos unos auriculares y oyéramos un sonido grave si estamos a la izquierda y uno agudo si estamos a la derecha. Cuando los dos sonidos tienen igual intensidad estamos en el centro. El llamado localizador del ILS hace lo mismo, pero electrónicamente, y así sabemos si estamos centrados o no con la pista, y hacia dónde hay que corregir, pero sin necesidad de auriculares ni de sonidos molestos.

Si nos sentáramos en el suelo junto a la pista veríamos algo como lo siguiente:

GSEs la misma idea de antes, exactamente igual, pero ahora las señales nos indican si estamos por encima o por debajo de la llamada senda de planeo. Con los dos subsistemas (localizador y senda) podemos ajustar la trayectoria del avión hasta llegar al punto de contacto con el suelo. Hay además unas balizas para indicar la distancia a la pista, pero creo que no es necesario entrar en más detalle.

El ILS tiene tres distintas categorías. Así, un ILS de categoría I (CAT I) permite descender hasta los 200 pies de altura (unos 60 metros), momento en el que el piloto debe frustrar la aproximación si aún no ve la pista. La CAT II permite descender hasta 100 pies (30 metros) y en cuanto a la CAT III, tiene varias subcategorías y podría llegar a permitir el aterrizaje aun sin ver la pista en ningún momento.

Hay un detalle importante: el ILS instalado en el aeropuerto es de una categoría determinada, pero el equipo del avión puede ser de otra diferente y el piloto por su parte tiene que tener la calificación correspondiente a una categoría que puede o no coincidir con las anteriores. Así, si en un aeropuerto se instala un ILS CAT III, pero nuestro avión sólo está certificado para CAT I el piloto tendrá que frustrar al llegar a los 200 pies de altura. Y si el avión también está certificado para CAT III, pero el piloto sólo tiene CAT I, estaremos en el mismo caso.

Gracias al ILS se puede intentar el aterrizaje con poca visibilidad, aunque sólo hasta cierto límite. En cualquier caso, condiciones de baja visibilidad implican demoras aunque tengamos el mejor ILS, los aviones más equipados y los pilotos más entrenados del mundo porque una vez en tierra el avión tiene que encontrar su camino entre la niebla y eso puede hacerle rodar más despacio, por lo que hay que guardar más distancia entre un avión y el siguiente. La seguridad manda, y aunque podamos volar casi a ciegas aún falta mucho para eliminar el casi.

Compartir

  • Twitter
  • Facebook
  • Meneame
  • Correo electrónico
  • LinkedIn

Me gusta esto:

Me gusta Cargando...

Volando a ciegas (II): VOR y DME

26 lunes Ene 2015

Posted by ibadomar in Aviación, Técnica

≈ Deja un comentario

Etiquetas

Aviación, DME, Navegación aérea, NDB, TACAN, Técnica, VOR, VORTAC

En el anterior artículo sobre sistemas de navegación, expliqué cómo funciona un NDB. Es un tipo de radioayuda muy antiguo, que el artículo comparaba con poner una luz en un lugar oscuro. Si tuviéramos un mapa en el que apareciese marcado el lugar de ese punto luminoso podríamos ir de una luz a otra, pero el sistema por sí mismo no ofrece ninguna pista de dónde estamos y necesitaríamos ayudarnos de una brújula para tener una idea de nuestra posición con respecto al punto de referencia. ¿Se podría mejorar esto?

Sí se puede, claro, y se hizo a finales de los años 40 mediante una radioayuda que además es más precisa y menos susceptible a interferencias. Emite en frecuencias más altas que las del NDB, en concreto entre 108 y 111,975 MHz, que corresponden a la banda de VHF, y por eso se conoce como radiofaro omnidireccional de VHF o VOR, acrónimo de VHF Omnidirectional Radio Range. En cuanto a su funcionamiento lo intentaré explicar de forma que sea sencillo de comprender. Técnicamente se trata de medir la diferencia de fase entre dos señales de 30 Hz, una que sirve de referencia y otra obtenida por modulación espacial… pero así no se entiende nada. Vamos con una comparación.

Si el NDB es como una luz fija, el VOR es como un faro cuyo haz vemos girar. La luz se va acercando y durante un instante apunta directamente hacia nosotros, luego se aleja y pasado un rato vuelve a acercarse, nos ilumina de nuevo, se aleja y así sucesivamente. Supongamos que tarda exactamente un minuto en dar una vuelta completa y que el faro está construido de tal manera que cuando el foco apunta hacia el norte se lanza un destello naranja en todas direcciones, que será nuestra señal de referencia. Ahora la cosa es tan fácil como tener un cronómetro a mano. Si vemos el destello naranja en el mismo momento en el que nos ilumina el faro querrá decir que estamos al norte de su posición, mientras que si hay 30 segundos entre el destello y el haz giratorio estaremos al sur, 45 segundos querrá decir que estamos al oeste, etc.

El VOR hace básicamente esto mismo sólo que con señales de radio en lugar de con luz visible. Y además lo hace muy deprisa: nuestro faro imaginario da una vuelta cada minuto, pero un VOR gira nada menos que 30 veces por segundo (1.800 revoluciones por minuto). Si tuviéramos un mapa con la posición del VOR marcada, podríamos saber con precisión en qué dirección estamos con respecto a él. Sólo que saber que nos encontramos al nor-noroeste del VOR es una ayuda, pero no nos da nuestra posición exacta. Volvemos a necesitar más de una radioayuda para conocerla y aunque el VOR tenga algunas ventajas sobre el NDB su uso en la práctica es similar: el avión se dedica a volar de una estación a la siguiente. Pero si usamos el VOR en combinación con el sistema llamado DME la cosa cambia.

DME significa Distance Measurement Equipment, es decir, sistema medidor de distancia. Quien haya leído el artículo que publiqué sobre sistemas de vigilancia y recuerde el funcionamiento de un radar secundario, lo sabe casi todo sobre el DME, porque éste no es más que un radar secundario que funciona al revés: el avión emite una señal (interrogación) y la estación de tierra responde con otra (respuesta). Midiendo el tiempo entre la emisión de la interrogación y la recepción de la respuesta sabemos a qué distancia está el avión del equipo de tierra. Igual que el radar, sólo que en éste la interrogación se emite desde tierra y la respuesta la envía el avión.

Los DME suelen colocarse asociados a un VOR y así ya podemos saber con precisión dónde estamos con respecto a un único punto: el VOR nos da la dirección y el DME la distancia. Los DME funcionan en la banda de UHF, en concreto entre los 960 y los 1215 MHz, pero en los mapas no suele venir este detalle porque cuando el DME está asociado a un VOR existe una tabla que relaciona las frecuencias de ambos. Por ejemplo, a un VOR que emita en 117,1 MHz le corresponde un DME funcionando en 1.142 MHz.

VOREn la imagen vemos como ejemplo un trozo de un mapa de radionavegación en el que aparecen, además del NDB de Valladolid, el VOR/DME del aeropuerto de Villanubla, y el VOR/DME de Zamora, por el que pasan un montón de aerovías. Quienes vivan en Zamora estarán acostumbrados a ver multitud de estelas de aviones en todas direcciones y este mapa explica por qué: es el equivalente a un cruce de varias carreteras, pero en el cielo. Tantos rutas coincidiendo en el mismo punto me han hecho pasar algún que otro momento de apuro cuando he tenido que ejercer como controlador en el sector correspondiente a esta zona del mapa en un día de mucho tráfico.D-VOR_PEK

Imagen de un VOR/DME tomada de Wikipedia

Es apropiado mencionar aquí el TACAN. Es un sistema muy similar al VOR/DME, pero diseñado para uso militar. No obstante, se puede emplear por usuarios civiles, y de hecho en países como Estados Unidos las aerovías suelen estar definidas por un VOR y un TACAN combinados formando lo que se llama un VORTAC. En España sin embargo el TACAN sólo se utiliza en aeródromos militares.

Con todas estas radioayudas ya tenemos una primera idea de cómo se orienta un avión sin ayuda de la vista mientras está en vuelo de crucero, pero ¿y si estamos en mitad del Océano Atlántico? Allí no hay donde instalar una radioayuda; pero para eso hay otros sistemas, de los que ya hablaremos en el próximo artículo de esta serie.

 

Compartir

  • Twitter
  • Facebook
  • Meneame
  • Correo electrónico
  • LinkedIn

Me gusta esto:

Me gusta Cargando...
← Entradas anteriores

Por iBadomar

Únete a otros 114 suscriptores

Estadísticas del blog

  • 109.307 visitas

Páginas

  • Diez años en Los Gelves
  • Sobre el blog
  • Un año en Los Gelves

Archivo de entradas

Etiquetas

Accidente aéreo Alejandro Magno Alemania Alfonso XIII Antigüedad Arqueología Arquitectura Arte Atenas Aviación Batalla Carlos II Cartago Cervantes Cine Comunismo Constantinopla Constitucion Control aéreo Corrupción Corsarios Cruzadas Cultura de seguridad Cultura justa Diocleciano Edad Media Edad Moderna Egipto Esparta España Espionaje Factores humanos Felipe V Fiscalidad Francia Franquismo Grecia Guerra del Peloponeso Guerra de Marruecos Guerra de Sucesión Guerra Fría Herodoto Hindenburg Historia Hitler ILS Imperio Bizantino Incidente aéreo Inocencio III Isabel I Isabel II Jerjes Jolly Roger Julio César Literatura Ludendorff Luis XIV Luis XVIII Messerschmitt Modelo de Reason Modelo SHELL Momentos cruciales Mussolini Napoleón Navegación aérea Periodismo Persia Pintura Piratas Política Prehistoria Primera Guerra Mundial Pétain Radar Reactor Realismo Renacimiento Restauración Revolución Revolución francesa Roma Salamina Segunda Guerra Mundial Seguridad aérea Sicilia Siglo XIX Siglo XVII Siglo XVIII Siglo XX Sila Stalin TCAS Temístocles Tetrarquía Tito Livio Transición Técnica Uberlingen Ucrania URSS

Meta

  • Registro
  • Acceder
  • Feed de entradas
  • Feed de comentarios
  • WordPress.com

Blog de WordPress.com.

Privacidad y cookies: este sitio utiliza cookies. Al continuar utilizando esta web, aceptas su uso.
Para obtener más información, incluido cómo controlar las cookies, consulta aquí: Política de cookies
  • Seguir Siguiendo
    • Los Gelves
    • Únete a 114 seguidores más
    • ¿Ya tienes una cuenta de WordPress.com? Accede ahora.
    • Los Gelves
    • Personalizar
    • Seguir Siguiendo
    • Regístrate
    • Acceder
    • Denunciar este contenido
    • Ver sitio web en el Lector
    • Gestionar las suscripciones
    • Contraer esta barra
 

Cargando comentarios...
 

    A %d blogueros les gusta esto: