• Sobre el blog
  • Un año en Los Gelves
  • Diez años en Los Gelves

Los Gelves

~ Somos lo que somos porque fuimos lo que fuimos.

Los Gelves

Archivos de etiqueta: Turbofán

Sobre hélices y turbinas

02 martes Jul 2013

Posted by ibadomar in Aviación, Técnica

≈ 1 comentario

Etiquetas

Aviación, Estatorreactor, Postcombustión, Pulsorreactor, Reactor, Técnica, Turbina, Turboeje, Turbofán, Turbohélice, Turborreactor

Dicen que Dios nos dio dos ojos, dos orejas y una boca porque hay que ver y oír dos veces antes de hablar una sola y dicen también que el necio cuando calla puede pasar por discreto. En general abundan los refranes y consejos que insisten en la necesidad de no hablar antes de tiempo, y de pensar e informarse antes siquiera de abrir la boca, y si tanto se insiste en ello debe de ser porque el consejo es necesario. Eso al menos debe de estar pensando la senadora Ángeles Marra, que se ha visto ridiculizada en los medios por calificar de tercermundista a un avión de apenas seis años de antigüedad.

Los hechos son los siguientes: el día 24 de junio el vuelo Madrid-Vigo tuvo un problema de motor, nada más despegar de Barajas, que obligó a los pilotos a regresar inmediatamente, haciendo algo tan poco común en este aeropuerto como es tomar tierra en una de las pistas que se utilizan para despegues con el fin de acortar lo máximo posible el tiempo de vuelo. El aterrizaje se produjo, dadas las circunstancias, con relativa normalidad.

En cuanto a las reacciones al suceso, era de esperar la habitual unanimidad en las alabanzas a los pilotos y controladores que hicieron cuanto estaba en su mano para resolver un hecho tan grave como es una emergencia en vuelo y que lograron que todo concluyera felizmente. ¿Unanimidad he dicho? Pues no, porque la susodicha senadora perdió una magnífica ocasión de guardar silencio al afirmar que el avión era tercermundista y peligroso. Como el avión salió de fábrica hace apenas seis años, la afirmación ha quedado como ejemplo de declaración absurda. Y todo porque el avión no era un reactor, sino un turbohélice. Por desgracia es habitual que mucha gente piense que un avión de hélices es un avión obsoleto. Nada más lejos de la realidad.

Éste es el motivo de que hoy publique un tipo de artículo nuevo en este blog, a sumar a los de aeronáutica en general, historia y, ocasionalmente, arte; un artículo sobre técnica. En él intentaré explicar qué es un motor turbohélice y en qué se diferencia de lo que se conoce como motor de reacción, haciendo lo posible para no entrar demasiado en tecnicismos. Como las imágenes son muy útiles en estos casos echaré mano de nuestra vieja amiga, Wikipedia, para tener acceso a dibujos y animaciones que faciliten la comprensión de este tema.

Para empezar vamos con algo bastante familiar para casi todo el mundo: el funcionamiento de un motor de 4 tiempos. La animación lo deja bastante claro: se trata (1) de que entre aire (en este caso mezclado previamente con combustible), (2) comprimirlo, (3) provocar la combustión, esto es la reacción química del combustible y el aire, con la consecuencia de que el gas al expandirse provoca el movimiento del pistón y (4) expulsar los gases resultantes de la combustión. De esta forma se aprovecha en el paso 3 la energía química del combustible para hacer girar un eje al que podemos fijar, por ejemplo, una hélice. Y ya tenemos una forma de mover un avión que se utiliza desde que los hermanos Wright consiguieron despegar del suelo en 1903.

4-Stroke-EngineAhora vamos a seguir básicamente los mismos pasos, pero usando un mecanismo totalmente diferente, puesto que haremos que cada paso del proceso ocurra en una sección del motor diferente de la del paso anterior. Imaginemos el motor como un cilindro horizontal. En un extremo, por el que entrará aire, pondremos un compresor para, como su nombre indica, comprimirlo. En el centro del cilindro inyectaremos combustible para que se queme y la expansión resultante hará que los gases salgan a gran velocidad por el otro extremo, generando un empuje.

El problema es que necesitamos algo que mueva el compresor y sería absurdo poner otro motor para ese trabajo, así que en lugar de eso hacemos que los gases, antes de salir, aprovechen parte de la energía que tienen tras la combustión para mover una turbina. Si un compresor es un dispositivo que hacemos girar para comprimir un gas, una turbina es lo mismo funcionando al revés: el gas en expansión la hace girar. Sólo necesitamos unir el compresor a la turbina con un eje para que ésta, al girar, provoque el giro de aquél. El motor queda así:

800px-Jet_engine_spanish.svgAquí vemos un compresor con diecisiete etapas de compresión, a continuación la cámara de combustión, después la turbina, de tres etapas, y la tobera de escape. Este tipo de motor se conoce como turborreactor y presenta el aspecto de un cilindro delgado, como podemos ver en fotografías de reactores comerciales bastante antiguos, porque en la actualidad está en desuso. Se emplea un derivado muy, muy parecido, que se llama turbofán.

Si en un turborreactor ponemos, no una, sino dos turbinas, una a continuación de la otra, cuyos ejes sean concéntricos, podemos mover dos compresores, logrando mejor rendimiento en conjunto. Pero podemos hacer algo más: añadir a la entrada, girando junto al primero de los compresores, lo que se conoce como un fan, que viene a ser una sección muy ancha del compresor. Tan ancha que sólo una parte del flujo de aire (flujo primario) prosigue por el interior del motor en la forma que ya hemos visto, mientras que otra parte (flujo secundario) no entra en el núcleo del motor y va directamente al exterior proporcionando un empuje suplementario. Así tenemos nuestro turbofán, que es más eficiente que el turborreactor y por eso se emplea en aviación comercial.

800px-Turbofan_operation_-_es.svg¿Y si en lugar de un fan ponemos una hélice? Ningún problema, excepto que el compresor gira demasiado deprisa para fijar la hélice sin más, pero eso se resuelve poniendo unos engranajes para reducir la velocidad de giro. Así tendremos un motor básicamente igual a los anteriores, pero en el que la propulsión se deberá principalmente a la tracción de la hélice y en menor medida al empuje de los gases de escape. Se conoce como motor turbohélice y tal y como vemos funciona básicamente igual a un reactor.

800px-Turboprop_operation-es.svg

El turbohélice utiliza casi toda la energía de los gases de combustión en mover la hélice y provocar tracción y sólo un 10% ó 20% de la propulsión se debe al empuje restante tras pasar por la turbina. ¿Y por qué no usar toda la energía de los gases en las turbinas y sustituir la tobera de salida por un simple tubo de escape, renunciando al empuje? Nuestro motor tendrá la turbina de costumbre para mover el compresor y detrás otra que mueva un eje diferente. Así obtenemos lo que se llama una turbina de gas o motor turboeje. Es exactamente igual que el turbohélice, pero ahora no hay nada de empuje, toda la energía de los gases se dedica a mover lo que queramos. Puede ser una hélice, una locomotora, el coche de Batman, un generador de electricidad o el rotor de un helicóptero, que es una de las aplicaciones más comunes de las turbinas de gas.

800px-Turboshaft_operation-es.svgLa ventaja de este tipo de motores en general es la gran potencia que dan en relación a su peso, que es lo que se busca en aviación. Los motores de 4 tiempos han quedado relegados a la aviación ligera y deportiva mientras que los de turbina, en sus diferentes variantes sirven para aviones de caza, reactores de transporte, turbohélices o helicópteros.

Como vemos, no hay diferencia real entre el turbofán de un B 737 y el turbohélice de un ATR 42. Los motores son básicamente iguales y no se puede calificar a ninguno de ellos de obsoleto. Si queremos unir dos ciudades separadas por 3.000 Km. un turbofán es la opción natural, puesto que permite velocidades muy altas. Como su consumo es menor a gran altitud, los aviones que lo emplean vuelan en las capas más altas de la troposfera. Sin embargo para ciudades separadas por unos pocos cientos de kilómetros un turbohélice es una excelente opción. Si quisiéramos volar de Barcelona a Palma de Mallorca, por ejemplo, podríamos considerar usar un turbohélice, puesto que la mayor velocidad del turbofán no supondría un ahorro demasiado grande de tiempo, la poca distancia no permite subir a las altitudes a las que este tipo de motor tiene mejor rendimiento y en general los costes del turbohélice son menores debido a su menor consumo.

En resumen, las hélices siguen teniendo una larga vida por delante y no hay motivo alguno para preocuparse al subir a un avión que las emplee. Personalmente, cada vez que alguien me dice que tuvo que volar «en un avión muy viejo… ¡era de hélice!» le deseo que vuele en un Caravelle, que era un reactor que dejó de fabricarse hace más de 40 años. Aunque tampoco esto debería ser motivo de preocupación siempre que se cumplan las normas y el mantenimiento y la operación del avión sean los adecuados. Aunque se tratara de un antiguo DC 3. Una de las máximas de la aviación es: no hay avión demasiado viejo, sino mantenimiento inadecuado.

Propina para los entusiastas.

Para quienes disfruten con las curiosidades sobre motores voy a comentar algo más. En la cámara de combustión de los motores de turbina que hemos visto no se aprovecha todo el oxígeno del aire. No es posible, porque de hacerlo, quemando más combustible, la temperatura alcanzada sería demasiado alta para la turbina. Por eso los gases de escape tienen aún bastante oxígeno como para utilizarlos por segunda vez. Podemos aprovecharlos poniendo, justo antes de la tobera de escape, otro inyector de combustible para que los gases, nuevamente recalentados tras una nueva combustión, salgan al exterior sin necesidad ya de mover ninguna turbina. En ese caso lograremos un empuje extra al precio de un consumo disparatado. Es lo que se llama postcombustión y la emplean, por ejemplo, los aviones de combate cuando necesitan mucho empuje, como es el caso del F 18 de la imagen, que va a despegar desde una pista tan corta como es la de un portaaviones.

800px-FA18_on_afterburnerSi el vehículo avanza a gran velocidad puede que la compresión del aire motivada por el propio desplazamiento (lo que se llama compresión dinámica) sea suficiente para el motor y no necesitemos compresor ni, por tanto, turbina. A esto se le llama estatorreactor y es útil a velocidades muy altas, por ejemplo unas 5 veces la del sonido. Sólo hay que acelerar antes el vehículo por otros medios. Puede emplearse para un misil de crucero, por ejemplo.

472px-Estatoreactor.svg

Una curiosidad es el pulsorreactor. Aquí tampoco hay compresor ni turbina. Se deja entrar el aire, se abren unas válvulas que lo dejan pasar a la cámara de combustión, se inyecta el combustible y se quema, con lo que el incremento de presión cierra las válvulas y los gases tienen que salir por detrás provocando empuje y aliviando la presión, lo que vuelve a abrir las válvulas para que entre una nueva carga de aire. Aquí la combustión, a diferencia de los otros casos, no es continua. Este motor ya no se usa, pero es todo un histórico que equipó a las bombas volantes alemanas de la Segunda Guerra Mundial, las siniestras, aunque bastante ineficaces, V1. Pero la historia de este antepasado del misil de crucero merece artículo aparte.Pulsoreactor

Compartir

  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en Meneame (Se abre en una ventana nueva) Meneame
  • Haz clic para enviar un enlace por correo electrónico a un amigo (Se abre en una ventana nueva) Correo electrónico
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Me gusta Cargando...

El vuelo imposible del UA232

09 domingo Dic 2012

Posted by ibadomar in Aviación, Técnica

≈ 4 comentarios

Etiquetas

Accidente aéreo, Aviación, DC10, Reactor, Técnica, Turbofán, UA232

Hace mucho que no aparece en este blog nada sobre aviación, casi tres meses, y sin embargo es uno de los temas que, según he comprobado, más interés suscita entre quienes visitan Los Gelves. Hoy me gustaría dar a conocer la historia de un caso muy particular, el de uno de esos días en los que ocurrió lo que según los expertos era imposible que ocurriera. El relato de un avión que perdió todos sus sistemas de control y de unos pilotos que siguieron peleando por conseguir dominarlo hasta el final. Es la historia del vuelo United 232.

El UA232 era un DC10 que despegó de Denver el 19 de julio de 1989 para volar a Philadelphia con una escala en Chicago. El DC10 era un avión bastante grande, un trimotor de doble pasillo que, en este caso, llevaba a bordo 285 pasajeros además de 11 tripulantes. Su aspecto es el de un monoplano de ala baja, dos motores bajo las alas y un tercero encastrado en la deriva como vemos en la fotografía, que además corresponde precisamente al avión al que nos referimos.

19890719-1-P-d-1-500Foto reproducida con permiso de Aviation Safety Network

El vuelo despegó sin incidentes y ascendió a su altitud de crucero de 37.000 pies (más de 11.000 metros). Llevaba en el aire una hora y siete minutos cuando de pronto las cosas se torcieron: una especie de explosión sacudió el aparato, que comenzó un descenso virando hacia el lado derecho. Los pilotos pudieron comprobar que el avión no respondía a los controles. ¿Qué demonios había ocurrido? La investigación reveló que el primer disco del fan del motor número dos, el que está empotrado en la deriva, presentaba signos de fatiga. Dicho así es demasiado técnico, intentaré explicarlo más claramente.

turbofan

Dibujo tomado de Wikipedia

Lo que vemos en el dibujo es un esquema de un motor turbofán. De izquierda a derecha tenemos el fan, compresor de baja, compresor de alta, cámara de combustión, turbina de alta, turbina de baja y tobera de escape. Cuando vemos de frente un motor de este tipo, cosa común en un aeropuerto porque es el tipo de motor que equipa a todos los reactores comerciales en la actualidad, observamos un disco de álabes que corresponde al fan. Pues bien, ese primer disco es el que tenía grietas de fatiga y durante el vuelo se produjo el fallo, es decir que una de las grietas de fatiga creció hasta el extremo de la rotura. Y ahora pensemos en qué puede ocurrir cuando un disco que está girando a toda velocidad se rompe: los pedazos salen disparados como metralla dañando todo lo que encuentran a su paso, primero la carcasa del motor y después lo que haya más allá, como por ejemplo el empenaje horizontal, que al menos no resultó destruido, y dentro de él los tres circuitos hidráulicos de los que disponía el avión. El líquido hidráulico se perdió y con él la posibilidad de manejar las superficies de control de la aeronave: timón de profundidad, de dirección, alerones, flaps… ninguno de estos mandos respondía ni podía recuperarse.

dc10Esquema de los circuitos hidráulicos dañados (Imagen: Wikipedia)

Como todos los sistemas críticos, los circuitos hidráulicos tenían un alto nivel de redundancia y si un circuito se perdía al menos quedaban los otros dos. Por ejemplo, si fallaba el circuito hidráulico número uno el avión se quedaba sin el alerón interior izquierdo y el exterior derecho, sin el timón de profundidad exterior derecho, sin la parte superior del timón de dirección… pero no perdía el resto de mandos. La probabilidad de fallo hidráulico en los tres sistemas a la vez se estimaba que era de una entre mil millones, y eso era precisamente lo que había ocurrido. Las consecuencias: no había control sobre los alerones, timón de profundidad, timón de dirección, flaps, frenos aerodinámicos… nada; y si el avión llegaba a aterrizar no había frenos ni era posible guiarlo en tierra usando la rueda delantera.

Habíamos dejado a nuestro DC10 iniciando un descenso con viraje hacia la derecha y a la tripulación comprobando que habían perdido el motor número dos y no tenían mando sobre el avión. Pero había algo que sí controlaban: los dos motores restantes, uno bajo cada ala. A base de dar más potencia al motor derecho que al izquierdo se consiguió frenar el viraje y el avión pudo mantenerse en vuelo… más o menos. Lo único que podían hacer los pilotos era jugar con el empuje de los motores para conseguir algo parecido al control del avión. El vuelo era espantoso, pero el avión seguía en el aire y eso era una buena noticia. Y no la única, por cierto, porque algunos factores se aliaban para dar esperanza al infortunado DC10 y sus ocupantes.

En primer lugar, la posición geográfica del avión era bastante buena: de haber ocurrido el fallo sobre el océano o en terreno montañoso la situación habría sido desesperada, pero estaban sobre terreno muy llano: Iowa, de manera que si no encontraban un aeropuerto apropiado podían incluso intentar un aterrizaje forzoso en la planicie. El aeropuerto más cercano, de todas formas, era el de Sioux City a apenas 60 millas, aunque no estaba claro que pudieran llegar. Otra buena cosa es que era de día y eso hacía que fuera fácil localizar el aeropuerto, o en caso necesario, un lugar adecuado para intentar posarse. Por cierto, que el DME (medidor de distancia) del aeropuerto no funcionaba y eso hacía más difícil la navegación, aunque el avión contó, naturalmente, con la asistencia del control aéreo, que dio información no sólo sobre el propio campo sino también sobre lugares alternativos e incluso alertó a la policía de tráfico para que cortara una autopista que podría servir para un aterrizaje de emergencia.

También acompañó el buen tiempo: de haber encontrado turbulencia o una tormenta sobre Sioux City el avión jamás podría haber intentado el aterrizaje allí. Otro golpe de buena suerte fue que el problema surgiera justo en el momento del cambio de turno en los hospitales de manera que en ese momento había el doble de équipos médicos de lo habitual: salientes y entrantes. Y además en Sioux City había dos hospitales de referencia para la zona, uno de traumatología y otro de quemados. No sólo eso sino que era miércoles, justo el día de servicio para la Guardia Aérea Nacional de Sioux City. Si el avión conseguía llegar al aeropuerto tendría la mejor asistencia que podía soñar.

Dentro del avión también había una buena noticia inesperada: uno de los pasajeros resultó ser un instructor de vuelo de DC10 y se ofreció para ayudar a la tripulación. Lo cierto es que el problema no era soluble y no pudo aportar ningún conocimiento que mejorara la situación, pero al menos él, desde detrás, podía manejar las palancas de gases con las dos manos: una para cada motor, y eso era una gran ayuda. Con todas las dificultades del mundo el avión consiguió acercarse a Sioux City siguiendo la ruta que vemos en la siguiente imagen.

trackDiagrama tomado del informe oficial

Por el caminó el DC10 arrojó buena parte del combustible y la tripulación consiguió sacar el tren de aterrizaje para intentar tomar tierra. En la grabación de las comunicaciones se oye al controlador del aeropuerto autorizar al avión a aterrizar «en cualquier pista» (cleared to land on any runway). La respuesta del piloto, que no había perdido el humor, llegó tras una carcajada: «Qué pejiguero, ¿tiene que ser en una pista?». Poco después los pilotos intentaban el milagro. Un cámara de una televisión local grabó el momento (si algún lector tiene miedo a volar le recomiendo que no vea el vídeo, el audio procede de la caja negra)

https://www.youtube.com/watch?v=E3MWiLQtGoc

El avión era casi incontrolable y por eso fue imposible el aterrizaje, además iba a mucha más velocidad de la adecuada y descendiendo muy deprisa. La punta del ala derecha tocó el suelo, el avión se dio la vuelta y se incendió… pero aún así, sin embargo, 185 de las 296 personas que iban a bordo sobrevivieron, incluyendo a los 4 ocupantes de la cabina de mando. Y eso a pesar de que esa parte del avión quedó tan dañada que los servicios de socorro no se ocuparon de ella hasta pasados 35 minutos.

El informe del accidente reconoce que la actuación de los pilotos sobrepasó con mucho lo que se podía esperar de semejantes circunstancias. Y ésta es la reflexión a la que me gustaría llegar con este artículo: a veces, cuando la situación es desesperada es cuando las personas somos capaces de llevar nuestra actuación hasta el borde de lo sobrehumano. Sólo así se explica que el vuelo del UA232 no finalizara con la muerte de todos sus ocupantes. Es cierto que 111 personas perdieron la vida, pero también lo es que las 185 que se salvaron lo hicieron contra todo pronóstico, porque sólo aquellos pilotos operando bajo la presión de aquellas circunstancias podían lograr llevar aquel DC10 hasta un aeropuerto y, casi, posarlo en tierra. ¿Por qué estoy tan seguro? Porque el caso del UA232 fue estudiado en un simulador en el que nada menos que 57 tripulaciones intentaron llevar el avión a tierra… y ninguna lo consiguió.

Fuentes de este artículo:

  1. Informe oficial sobre el accidente.
  2. Transcripción de una conferencia dada por el comandante del avión.
  3. Artículo incluyendo una entrevista al comandante del avión.
  4. Artículo del Chicago Tribune 4 meses después del accidente en el que un piloto del simulador afirma que era imposible pretender un aterrizaje normal.

Compartir

  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en Meneame (Se abre en una ventana nueva) Meneame
  • Haz clic para enviar un enlace por correo electrónico a un amigo (Se abre en una ventana nueva) Correo electrónico
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Me gusta Cargando...

Por iBadomar

Avatar de Desconocido

Únete a otros 111 suscriptores

Estadísticas del blog

  • 123.385 visitas

Páginas

  • Diez años en Los Gelves
  • Sobre el blog
  • Un año en Los Gelves

Archivo de entradas

Etiquetas

Accidente aéreo Alejandro Magno Alemania Antigüedad Arqueología Arquitectura Arte Atenas Aviación Batalla Carlos II Cartago Cervantes Churchill Cine Comet Comunismo Constantinopla Constitucion Control aéreo Corrupción Corsarios Cruzadas Cultura de seguridad Cultura justa Diocleciano Edad Media Edad Moderna Egipto Esparta España Espionaje Factores humanos Felipe V Fiscalidad Francia Franquismo Grecia Guerra del Peloponeso Guerra de Sucesión Guerra Fría Herodoto Hindenburg Historia Hitler ILS Imperio Bizantino Incidente aéreo Inocencio III Isabel I Isabel II Jerjes Jolly Roger Julio César Literatura Ludendorff Luis XIV Luis XVIII McRobertson Messerschmitt Modelo de Reason Modelo SHELL Momentos cruciales Mussolini Napoleón Navegación aérea Periodismo Persia Pintura Piratas Política Prehistoria Primera Guerra Mundial Pétain Radar Reactor Realismo Renacimiento Restauración Revolución Roma Salamina Segunda Guerra Mundial Seguridad aérea Sicilia Siglo XIX Siglo XVII Siglo XVIII Siglo XX Sila Stalin TCAS Temístocles Tetrarquía Tito Livio Transición Técnica Uberlingen Ucrania URSS

Meta

  • Crear cuenta
  • Iniciar sesión
  • Feed de entradas
  • Feed de comentarios
  • WordPress.com

Blog de WordPress.com.

Privacidad y cookies: este sitio utiliza cookies. Al continuar utilizando esta web, aceptas su uso.
Para obtener más información, incluido cómo controlar las cookies, consulta aquí: Política de cookies
  • Suscribirse Suscrito
    • Los Gelves
    • Únete a otros 111 suscriptores
    • ¿Ya tienes una cuenta de WordPress.com? Inicia sesión.
    • Los Gelves
    • Suscribirse Suscrito
    • Regístrate
    • Iniciar sesión
    • Denunciar este contenido
    • Ver el sitio en el Lector
    • Gestionar las suscripciones
    • Contraer esta barra
 

Cargando comentarios...
 

    %d